
AUGUST 1991

Using the NetWare 3.x
Internal Debugger
Morgan B. Adair
Technical Consultant
Systems Engineering Division

NetWare v3.x includes an assembly language-oriented
debugger. This AppNote uses a programming example and
step-by-step instructions to illustrate how software
developers can use the internal debugger when developing
NetWare Loadable Modules (NLMs).

Copyright © 1991 by Novell, Inc., Provo, Utah. All rights reserved.

As a means of promoting NetWare AppNotes, Novell grants you without
charge the right to reproduce, distribute, and use copies of the AppNotes,
provided you do not receive any payment, commercial benefit, or other
consideration for the reproduction or distribution, or change any copyright
notices appearing on or in the document.

Disclaimer

Novell, Inc. makes no representations or warranties with respect to the
contents or use of these Application Notes (AppNotes) or of any of the third-
party products discussed in the AppNotes. Novell reserves the right to
revise these AppNotes and to make changes in their content at any time,
without obligation to notify any person or entity of such revisions or
changes. These AppNotes do not constitute an endorsement of the third-
party product or products that were tested. Configuration(s) tested or
described may or may not be the only available solution. Any test is not a
determination of product quality or correctness, nor does it ensure
compliance with any federal, state, or local requirements. Novell does not
warranty products except as stated in applicable Novell product warranties
or license agreements.

NetWare Application Notes—Month 1991

Contents
The NetWare v3.x Internal Debugger 59

Debugger Basics 59

Example Program: LISTNLMS.NLM 60
Preparing for the Debugging Session 62
Starting to Debug 65

Conclusion 69

Appendix A: Internal Debugger
Quick Reference 70

Breakpoints 71
Debugger Expressions 72

Title of the AppNote (shortened if necessary)

NetWare Application Notes—Month 1991

The NetWare v3.x
Internal Debugger

NetWare v3.x has an internal assembly language-oriented
debugger, which was used as a tool in developing the
NetWare kernel and many of the NLMs and drivers that ship
with NetWare 3.x. The internal debugger was left in the
released code so that third-party NLM developers can also
use the internal debugger as a development tool.

This AppNote presents a programming example and step-by-
step instructions to illustrate some techniques for using the
internal debugger when developing NLMs. Only a few of the
debugger's 42 commands are used in the example
debugging session included in this AppNote, but if you work
along with the commands presented here, you will see how
to

● break into the debugger from a running C program
● identify the point in your program's execution where it
entered the debugger
● locate your program's code data in memory
● disassemble program code
● examine the contents of CPU registers and the stack
● look at the file server's screen from the debugger
● locate memory locations corresponding to program
variables
● traverse a linked list that a program built dynamically
● exit the debugger and return to normal file server
operation

The example program given in this AppNote was developed
using the NetWork C for NLMs Software Development Kit,
version 2.0. The example debugging session was executed
on a NetWare v3.11 server. The example program can be
developed using any version of Network C, but some of the
debugging commands described in this AppNote require
NetWare v3.1 or greater.

Debugger Basics
NetWare enters the internal debugger when the CPU
executes an interrupt 3. There are four ways to activate the
debugger:

● Press <Shift><Shift><Alt><Esc>. This method is not
available if the SECURE CONSOLE command has been
executed on the file server.
● Execute an INT 3 instruction in an assembly language
routine.
● Call the Breakpoint function (part of the Network C
library) from a C program.
● Type "386debug" after the server has abended.

In debugger commands, you must enter all numbers
(memory addresses, offsets, byte, word, or instruction
counts, and so on) are entered in hexadecimal. The
debugger's help screens say that the "c" command to
change the contents of memory can take a string

Title of the AppNote (shortened if necessary)

parameter, but this version of the command has not yet
been implemented.

Network C library functions use stack-based parameter
passing. All parameters are passed as four bytes on stack,
except doubles and structures or unions larger than four
bytes.

NetWare v3.x uses protected mode and a flat memory
model, so all addresses are 32 bits. The debugger,
therefore, does not even report the value of segment
registers (applause, cheers). The mapping of virtual to
physical memory addresses changed between NetWare
versions 3.1 and 3.11. A simplified memory map for the
three 3.x versions of NetWare released to date is given
below.

Figure 1: NetWare v3.x memory map.

Example Program:
LISTNLMS.NLM

Type in the following program, or download it from NetWire,
CompuServe's Novell Forum A, Forum Library 16, Novell
Uploads (GO NOVA).

Compile and link the program using the NetWork C for NLMs
Software Developer's Kit (a make file is given after the
program listing).

NetWare Application Notes—Month 1991

/**
* LISTNLMS.C
* Illustrate linked list traversal with NetWare internal debugger
* Builds list of NLMs in SYS:SYSTEM
*
* Morgan Adair
* 7/11/91
**/

#include <stdio.h>
#include <nwdir.h>
#include <string.h>
#include <malloc.h>
#include <conio.h>
#include <errno.h>

typedef struct filename {
char fname[NAME_MAX+1]; /* 12 + 1 bytes */
struct filename *next;

} FILE_NAME;

void CleanUp(void);

DIR *sysSystem;
FILE_NAME *fileList = NULL;

void main(void)
{

DIR *dirEntry;
FILE_NAME *newNode;
int numFiles = 0;

atexit(CleanUp);

sysSystem = opendir("SYS:SYSTEM*.NLM");

if (!sysSystem) {
printf("Unable to open SYS:SYSTEM");
exit();

}

Breakpoint(1); /* just for fun, break into the debugger here */

do { /* while getting directory entries */
dirEntry = readdir(sysSystem);
if (dirEntry) {

newNode = (FILE_NAME *)malloc(sizeof(FILE_NAME));
if (!newNode) {

printf("Out of memory");
exit();

}
numFiles++;
strcpy(newNode->fname, dirEntry->d_name);
newNode->next = fileList;
fileList = newNode;
/* display file name, just to keep up the appearance that
 we're doing something useful (maybe if we sorted the

file names alphabetically . . .) */
printf("%-20s", newNode->fname);

}
} while (dirEntry);

Breakpoint(2);
}

void CleanUp(void)
{

FILE_NAME *newNode;

closedir(sysSystem);

while (fileList) {
newNode = fileList;
fileList = fileList->next;
free(newNode);

Title of the AppNote (shortened if necessary)

}
}

Here is the make file I used to build LISTNLMS.

.BEFORE
@set inc386=mba/sys:\nwcnlms\h
@set wcg386=mba/sys:\nwcnlms\bin\386wcgl.exe

CLIBIMP = mba/sys:\nwcnlms\imp\clib.imp
OBJFILE = listnlms.obj
PRELUDE = mba/sys:\nwcnlms\imp\prelude.obj
NLMNAME = listnlms

.c.obj:
@echo Compiling $[*.c
@wcc386p /zq /d1 /3s $[*.c

$(NLMNAME).nlm : $(OBJFILE) $(NLMNAME).def
@wlink @$(NLMNAME).def
@del $(NLMNAME).def

$(NLMNAME).def : makefile
@echo FORMAT NOVELL NLM 'List NLM files in SYS:SYSTEM' >$(NLMNAME).def
@echo FILE $(OBJFILE) >>$(NLMNAME).def
@echo FILE $(PRELUDE) >>$(NLMNAME).def
@echo NAME $(NLMNAME) >>$(NLMNAME).def
@echo MODULE clib >>$(NLMNAME).def
@echo OPTION VERSION=0.10 >>$(NLMNAME).def
@echo OPTION SCREENNAME 'listnlms' >>$(NLMNAME).def
@echo IMPORT @$(CLIBIMP) >>$(NLMNAME).def
@echo MODULE clib.nlm >>$(NLMNAME).def

$(OBJFILE) : $(NLMNAME).c

Preparing for the
Debugging Session

Before beginning the debugging session, disassemble
LISTNLMS's object file using the Watcom disassembler:
wdisasm /s /l listnlms

The "/s" option tells the disassembler to include the C
source code lines in the disassembly listing. The "/l" option
causes the disassembly listing to be saved in a file.

The disassembly listing for LISTNLMS follows. When
debugging your own NLMs, you will probably want to have
copies of both the source code and the disassembly listing
for your NLM, either printed or on a workstation screen.

Module: listnlms.c
Group: 'DGROUP' CONST,_DATA,_BSS

Segment: '_TEXT' BYTE USE32 000000f2 bytes

/**
* LISTNLMS.C
* Illustrate linked list traversal with NetWare internal debugger
* Builds list of NLMs in SYS:SYSTEM
*
* Morgan Adair
* 7/11/91
**/

#include <stdio.h>

NetWare Application Notes—Month 1991

#include <nwdir.h>
#include <string.h>
#include <malloc.h>
#include <conio.h>
#include <errno.h>

typedef struct filename {
char fname[NAME_MAX+1]; /* 12 + 1 bytes */
struct filename *next;

} FILE_NAME;

void CleanUp(void);

DIR *sysSystem;
FILE_NAME *fileList = NULL;

void main(void)
{

DIR *dirEntry;
FILE_NAME *newNode;
int numFiles = 0;

0000 b8 14 00 00 00 main mov eax,00000014H
0005 e8 00 00 00 00 call __STK
000a 53 push ebx
000b 56 push esi

atexit(CleanUp);

000c 68 00 00 00 00 push offset CleanUp
0011 e8 00 00 00 00 call atexit
0016 83 c4 04 add esp,0004H

sysSystem = opendir("SYS:SYSTEM*.NLM");

0019 68 04 00 00 00 push offset L7
001e e8 00 00 00 00 call opendir
0023 83 c4 04 add esp,0004H
0026 a3 00 00 00 00 mov sysSystem,eax

if (!sysSystem) {
002b 85 c0 test eax,eax
002d 75 12 jne L1

printf("Unable to open SYS:SYSTEM");
002f 68 15 00 00 00 push offset L8
0034 e8 00 00 00 00 call printf
0039 83 c4 04 add esp,0004H

exit();
}

/* just for fun, break into the debugger here */
003c e8 00 00 00 00 call exit

Breakpoint(1);

do { /* while getting directory entries */
0041 6a 01 L1 push 01H
0043 e8 00 00 00 00 call Breakpoint
0048 83 c4 04 add esp,0004H

dirEntry = readdir(sysSystem);
004b ff 35 00 00 00 00 L2 push sysSystem
0051 e8 00 00 00 00 call readdir
0056 83 c4 04 add esp,0004H
0059 89 c6 mov esi,eax

if (dirEntry) {
005b 85 c0 test eax,eax
005d 74 4b je L4

newNode = (FILE_NAME *)malloc(sizeof(FILE_NAME));
005f 6a 11 push 11H
0061 e8 00 00 00 00 call malloc

Title of the AppNote (shortened if necessary)

0066 83 c4 04 add esp,0004H
0069 89 c3 mov ebx,eax

if (!newNode) {
006b 85 c0 test eax,eax
006d 75 12 jne L3

NetWare Application Notes—Month 1991

printf("Out of memory");
006f 68 2f 00 00 00 push offset L9
0074 e8 00 00 00 00 call printf
0079 83 c4 04 add esp,0004H

exit();
}
numFiles++;

007c e8 00 00 00 00 call exit

strcpy(newNode->fname, dirEntry->d_name);
0081 8d 46 2c L3 lea eax,+2cH[esi]
0084 50 push eax
0085 53 push ebx
0086 e8 00 00 00 00 call strcpy
008b 83 c4 08 add esp,0008H

newNode->next = fileList;
008e a1 00 00 00 00 mov eax,fileList
0093 89 43 0d mov +0dH[ebx],eax

fileList = newNode;
/* display file name, just to keep up the appearance that
 we're doing something useful (maybe if we sorted the

file names alphabetically . . .) */
0096 89 1d 00 00 00 00 mov fileList,ebx

printf("%-20s", newNode->fname);
}

009c 53 push ebx
009d 68 3d 00 00 00 push offset L10
00a2 e8 00 00 00 00 call printf
00a7 83 c4 08 add esp,0008H

} while (dirEntry);

00aa 85 f6 L4 test esi,esi
00ac 75 9d jne L2

Breakpoint(2);
00ae 6a 02 push 02H
00b0 e8 00 00 00 00 call Breakpoint
00b5 83 c4 04 add esp,0004H

}

00b8 5e pop esi
00b9 5b pop ebx
00ba c3 L5 ret

void CleanUp(void)
{

FILE_NAME *newNode;

00bb b8 08 00 00 00 CleanUp mov eax,00000008H
00c0 e8 00 00 00 00 call __STK

closedir(sysSystem);

00c5 ff 35 00 00 00 00 push sysSystem
00cb e8 00 00 00 00 call closedir
00d0 83 c4 04 L6 add esp,0004H

while (fileList) {
00d3 83 3d 00 00 00 00
 00 cmp dword ptr fileList,0000H
00da 74 de je L5

newNode = fileList;
00dc 8b 15 00 00 00 00 mov edx,fileList

fileList = fileList->next;
00e2 8b 42 0d mov eax,+0dH[edx]
00e5 a3 00 00 00 00 mov fileList,eax

Title of the AppNote (shortened if necessary)

free(newNode);
}

NetWare Application Notes—Month 1991

00ea 52 push edx
00eb e8 00 00 00 00 call free
00f0 eb de jmp L6

}

No disassembly errors

--
Segment: 'CONST' DWORD USE32 00000043 bytes
0000 00 00 00 00 _main_entry_ DD __Null_Argv
0004 53 59 53 3a 53 59 53 54 L7 - SYS:SYST
000c 45 4d 5c 2a 2e 4e 4c 4d - EM*.NLM
0014 00 - .
0015 55 6e 61 62 6c 65 20 74 L8 - Unable t
001d 6f 20 6f 70 65 6e 20 53 - o open S
0025 59 53 3a 53 59 53 54 45 - YS:SYSTE
002d 4d 00 - M.
002f 4f 75 74 20 6f 66 20 6d L9 - Out of m
0037 65 6d 6f 72 79 00 - emory.
003d 25 2d 32 30 73 00 L10 - %-20s.

No disassembly errors
--
Segment: '_DATA' DWORD USE32 00000004 bytes
0000 00 00 00 00 fileList -

No disassembly errors
--
Segment: '_BSS' DWORD USE32 00000004 bytes

No disassembly errors
--

Starting to Debug
Load LISTNLMS on your test file server. As soon as
LISTNLMS begins executing, it breaks into the internal
debugger, and displays messages similar to those shown
below.
Break at 003876C8 because of CLib Breakpoint call
EAX = 00000001 EBX = 00000001 ECX = 00000000 EDX = 0038305C
ESI = 00383228 EDI = 003833A4 EBP = 0037F1F6 ESP = 0037F134
EIP = 003876C8 FLAGS = 00007202 (IF)
00876C8 83C404 ADD ESP,00000004

The sample program contained two calls to Breakpoint, each
one passing a different value to the function. If we did not
know which call interrupted execution of the NLM, the ".a"
command displays the value passed to Breakpoint.
.a
Debug entry: 1110
Break caused by: CLib Breakpoint call

Error code: 00000001

Since the NetWork C for NLMs library functions use stack-
based parameter passing, the value that was passed to
Breakpoint is also the top value on the stack. To look at the
stack, use the debugger's "d" command to dump memory at
the address contained in the stack pointer, ESP (0037F134
in the example).

Title of the AppNote (shortened if necessary)

Because the address of the memory location we want to
examine is contained in a register, we can either specify the
address explicitly:

d 0037F134
0037F134 01 00 00 00 70 28 30 00-01 00 00 00 51 44 3A 00 p(8.....QD:.

or by the name of the register containing the address:

d esp
0037F134 01 00 00 00 70 28 30 00-01 00 00 00 51 44 3A 00 p(8.....QD:.

Restart LISTNLMS by issuing a "g" command. The program
is interrupted again by another breakpoint call.
g
Break at 00387735 because of CLib Breakpoint call
EAX = 00000002 EBX = 00383654 ECX = 0005F158 EDX = 00000000
ESI = 00000000 EDI = 003833A4 EBP = 0037F1F6 ESP = 0037F134
EIP = 00387735 FLAGS = 00007202 (IF)
00387735 83C404 ADD ESP,00000004

Notice that the value of the stack pointer has not changed
since the last breakpoint. We can re-execute the command
to dump the stack by pressing the up arrow key until the
previous "d" command is displayed again, then pressing
<Enter>.

d esp
0037F134 02 00 00 00 C4 8B 03 00-01 00 00 00 51 44 3A 00 D.......QD:.

At this point, you may want to view the list of file names
displayed on LISTNLMS's screen. You can do this by
executing the debugger's "v" command. Then press any key
to cycle through each of the server's screens.

At this point in LISTNLM's execution, the program has built a
linked list of all NLM files in SYS:SYSTEM. To examine the
linked list, we have to find where the first node in the list is
stored in memory. To do so, start by finding where NetWare
has loaded LISTNLMS.NLM into memory by executing the
".m" command. The debugger displays a list of all modules
(server, NLM, LAN drivers, disk drivers) that have been
loaded.
.m
SERVER.NLM NetWare Server Operating System
 Code Address: 00100000h Length: 0007C620h
 Data Address: 0017C620h Length: 00039350h
LISTNLMS.NLM List NLM files in SYS:SYSTEM
 Version 0.10 July 11, 1991
 Code Address: 00387680h Length: 000001ABh
 Data Address: 00387830h Length: 00000050h

.

.

.

Use the debugger's "u" command to disassemble LISTNLMS,

NetWare Application Notes—Month 1991

beginning at the program's code address. Pressing <Enter>
continues program disassembly, 16 lines at a time.
Disassemble LISTNLMS until the line shown in bold is
displayed.
u 00387680
00387680 B814000000 MOV EAX,00000014
00387685 E8E0CE0100 CALL CLIB.NLM|__STK
0038768A 53 PUSH EBX
0038768B 56 PUSH ESI
0038768C 683B773800 PUSH 0038773B
00387691 E836D20100 CALL CLIB.NLM|atexit
00387696 83C404 ADD ESP,00000004
00387699 6834783800 PUSH 00387834
0038769E E81A5E0100 CALL CLIB.NLM|opendir
003876A3 83C404 ADD ESP,00000004
003876A6 A378783800 MOV [00387878],EAX
003876AB 85C0 TEST EAX,EAX
003876AD 7512 JNZ 003876C1
003876AF 6845783800 PUSH 00387845
003876B4 E850A00300 CALL CLIB.NLM|printf
003876B9 83C404 ADD ESP,00000004
#
003876BC E8ADDB0100 CALL CLIB.NLM|exit
003876C1 6A01 PUSH 01
003876C3 E8D8020400 CALL CLIB.NLM|Breakpoint
003876C8 83C404 ADD ESP,00000004
003876CB FF3578783800 PUSH dword ptr [00387878]
003876D1 E878620100 CALL CLIB.NLM|readdir
003876D6 83C404 ADD ESP,00000004
003876D9 89C6 MOV ESI,EAX
003876DB 85C0 TEST EAX,EAX
003876DD 744B JZ 0038772A
003876DF 6A11 PUSH 11
003876E1 E869A40100 CALL CLIB.NLM|malloc
003876E6 83C404 ADD ESP,00000004
003876E9 89C3 MOV EBX,EAX
003876EB 85C0 TEST EAX,EAX
003876ED 7512 JNZ 00387701
#
003876EF 685F783800 PUSH 0038785F
003876F4 E810A00300 CALL CLIB.NLM|printf
003876F9 83C404 ADD ESP,00000004
003876FC E86DDB0100 CALL CLIB.NLM|exit
00387701 8D462C LEA EAX,[ESI+2C]
00387704 50 PUSH EAX
00387705 53 PUSH EBX
00387706 E87FD50300 CALL CLIB.NLM|strcpy
0038770B 83C408 ADD ESP,00000008
0038770E A174783800 MOV EAX,[00387874]
00387713 89430D MOV [EBX+0D],EAX
00387716 891D74783800 MOV [00387874],EBX
0038771C 53 PUSH EBX
0038771D 686D783800 PUSH 0038786D
00387722 E8E29F0300 CALL CLIB.NLM|printf
00387727 83C408 ADD ESP,00000008

The boldface line in the disassembly listing above
corresponds to the following line in the disassembly listing
produced by wdisasm.

newNode->next = fileList;
008e a1 00 00 00 00 mov eax,fileList

Title of the AppNote (shortened if necessary)

Since wdisasm does not know where NetWare will load an
NLM into memory, it uses variable names to represent the
memory address where the variables will be stored. The
internal debugger's disassembly listing shows that fileList,
the address of the first node in the linked list, is stored at
address 00387874.

Because we may want to refer to the first node of the linked
list more than once, we can define a symbol with a value
equal to its address:
n fileList 00387874

To dump just the address of the first file name node, tell the
"d" command to dump just the four bytes at 00387874.
d fileList 4
00387874 54 36 38 00 T68.

The first node is at memory address 00383654. To begin
traversing the linked list, modify the last "d" command to
use the value of fileList as the memory address of the first
node. The syntax of the debugger's "dl" command is

dl{+linkOffset} address {length}

where linkOffset is offset of the pointer to the next node in
the linked list, and length is the number of bytes to be
dumped. Nodes in LISTNLMS's linked list have the structure
typedef struct filename {

char fname[NAME_MAX+1]; /* 12 + 1 bytes */
struct filename *next;

} FILE_NAME;

so the offset of the link to the next node is 13 (0Dh). The
total length of the structure is 17 (11h) bytes.
dl+0d [d fileList] 11
Link node 00000001
00383654 4C 49 53 54 4E 4C 4D 53-2E 4E 4C 4D 00 78 36 38
LISTNLMS.NLM.x68
00383664 00 .

The square brackets indicate an indirect reference through
the specified address. The d in front of fileList specifies that
the dword value at fileList is to be used as the address to be
dumped.

You can now press <Enter> to traverse through each node
of the linked list, until the debugger reaches the node with a
null pointer to the next node.

NetWare Application Notes—Month 1991

#
Link node 00000002
00383678 54 45 53 54 2E 4E 4C 4D-00 00 00 00 FF 9C 36 38 TEST.NLM......68
00383688 00 .
#

.

.

.
Link node 0000002A
0003C3D0 52 53 50 58 2E 4E 4C 4D-00 00 00 00 00 00 00 00 RSPX.NLM........
0003C3E0 00 .
#
No more nodes in linked list

Conclusion
This AppNote touches only a few of the internal debugger's
commands, but by now you should know enough to use the
debugger as a tool in your NLM development process. The
appendix on the following pages gives a quick reference to
all internal debugger commands.

Title of the AppNote (shortened if necessary)

Appendix A: Internal Debugger
Quick Reference

The table below summarizes NetWare v3.x internal
debugger commands. Optional parameters are given in
[square brackets].

Figure 2: NetWare v3.x internal debugger commands.

Command Description
b Display all current breakpoints.
bc number Clear the breakpoint specified by number (0-3).
bca Clear all breakpoints.
b = address [expression] Set an execution breakpoint at address. Break will occur if

EIP=address, and expression evaluates to TRUE.
br = address [expression] Set a read/write breakpoint at address. Break will occur if

memory at address is referenced, and expression evaluates
to TRUE.

bw = address [expression] Set a write breakpoint at address. Break will occur if memory
at address is changed, and expression evaluates to TRUE.

c address[=value(s)] Change memory at address to the specified value(s). If
value(s) are not specified, debugger prompts for new values.

d address [count] Dump count bytes (default 256) at address.*
dl[+linkOffset] address
[length]

Dump memory starting at address for length bytes and
traverse a linked list by following pointer linkoffset bytes from
address (default linkoffset is 0). Press <Enter> to dump the
next link node (v3.1/v3.11).

f FLAG=value Change the FLAG to value (0 or 1), where FLAG is CF, AF, ZF,
SF, IF, TF, PF, DF or OF.

g [address(es)] Begin execution at EIP and set temporary breakpoint(s) at
address(es).

h Display general help.
hb Display breakpoint help.
he Display expression help.
i [size] PORT Input size from PORT, where size is B (byte), W (word), or D

(dword) (default is byte).
m address [L length]
byte(s)

Search memory beginning at address for byte(s) (if length is
not specified, the rest of memory will be searched). Byte
values must be given in hexadecimal and separated by
spaces or commas.*

n [symbolName value] Define new symbol symbolName equal to value. If
symbolName and value are not specified, all symbols and
values are displayed.

n -symbolName Remove user-defined symbol symbolName (n-- remove all
symbols) (v3.1/v3.11).

NetWare Application Notes—Month 1991

o [size] PORT=value Output size value to PORT, where size is B (byte), W (word),
or D (dword) (default is byte).

p Single step, proceed over CALLs, REPs, and LOOPs.*
q Quit and exit back to DOS (or reboot if DOS has been

removed).
r Display registers and flags (v3.1/v3.11).
REG=value Change the specified register to value, where REG is EAX,

EBX, ECX, EDX, ESI, EDI, ESP, EBP or EIP.
s Single step, trace into CALLs, REPs or LOOPs.*
t Same as s.*
u address [count] Unassemble count instructions starting at address.*
v View file server screens (press any key to go to next screen).
z expression Evaluate expression.
? [address] If symbolic information has been loaded, display the closest

symbols to address (default is EIP).
.a Display the abend or break reason (v3.1/v3.11).
.c Dump diagnostic data to diskette.
.h Display dot command help.
.m Display names and addresses of all loaded modules.
.p [address] Display address as a process control block (if address is not

specified, display all process names and addresses).
.r Display the process control block for the running process.
.s [address] Display address as a screen structure (if address is not

specified, display all screen names and addresses).
.v Display server version.

*The d, m, p, s, t, and u commands can be continued or
repeated by pressing <Enter> at the # prompt.

Breakpoints
A breakpoint condition can be any expression. If a
breakpoint condition is specified, the condition is evaluated
when the break occurs. If the condition is not true,
execution resumes without entering the debugger.

Title of the AppNote (shortened if necessary)

Figure 3: NetWare v3.x internal debugger expression operators
(continued).

There are four breakpoint registers, allowing a maximum of
four breakpoints to be set at a time. These breakpoints can
be permanent breakpoints (set using the "b" command) or
temporary breakpoints (set using the "g" command). In
addition, the "p" command also sets a temporary breakpoint
if the current instruction can not be single-stepped (a CALL,
or one of the REP or LOOP families). Because of the limited
number of breakpoint registers, you might not be able to
execute a "g" or "p" command when four permanent
breakpoints are set.

Here are some examples of commands that use breakpoints:
b = PushNode [d esp+4] == 0

Set a breakpoint at PushNode (which you must have
previously declared with the n command). Break if the
first parameter on the stack is NULL.

bw = 16fe60 eip >= listnlms && eip <= (listnlms+1ab)
Break if any instruction in LISTNLMS tries to modify
memory address 16fe60.

g [d esp]
Execute until the current function returns to its caller.

Debugger Expressions
Expressions consist of terms and operators. Terms in
expressions can be hexadecimal constants, symbols, or
register or flag names. You can use grouping operators to
cause terms to be interpreted as indirect memory addresses
or hardware port addresses. The following are register and
flag names as they are used in debugger expressions.

Registers: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP and EIP
Flags: FLCF, FLAF, FLZF, FLSF, FLIF, FLTF, FLPF, FLDF and
FLOF

The table below gives debugger expression operators in
order of precedence.

Figure 3: NetWare v3.x internal debugger expression
operators.

Symbol Description Precedence
Grouping operators
(expression) Evaluate expression at higher precedence. 0
[size expression] Read size from the memory address specified by

expression, where size is B (byte), W (word), or D
(dword).

0

{size expression} Evaluate expression and resulting value as a port
address. The bracketed expression is replaced with
the byte, word, or double word input from the port.

0

Unary operators

NetWare Application Notes—Month 1991

Figure 3: NetWare v3.x internal debugger expression operators
(continued).
 ! logical NOT 1
 - 2's complement 1
 ~ 1's complement 1
Binary operators
 * multiply 2
 / divide 2
 % mod 2
 + add 3
 - subtract 3
 >> bit shift right 4
 << bit shift left 4
 > greater than 5
 < less than 5
 >= greater than or equal to 5
 <= less than or equal to 5
 != not equal to 6
 == equal to 6
 & bitwise AND 7
 ^ bitwise XOR 8
 | bitwise OR 9
 && logical AND 10
 || logical OR 11
Ternary operator
expression1 ?
expression2 ,
expression3

If expression1 is true then the result is the value of
expression2, otherwise the result is the value of
expression3.

12

Title of the AppNote (shortened if necessary)

Figure 3: NetWare v3.x internal debugger expression operators
(continued).

NetWare Application Notes—Month 1991

